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In [1,  2] a system of quasi-one-dimensional equations of thin jets of dropping liquids 
was derived which makes it possible, in particular, to investigate the process of growth of 
bending perturbations of high-velocity jets due to the action of the ambient air. These 
equations were solved in the limit of small perturbations, which made it possible to deter- 
mine the corresponding increment in a linear approximation [3]. In the present article we 
give certain results of a numerical solution of the quasi-one-dimensional equations of jet 
dynamics If, 2] for the case of finite plane bending perturbations of jets of Newtonian vis- 
cous liquids with a round cross section. 

I. Fundamental Equations 

First of all, let us discuss the variant of the problem without allowance for the air 
drag force. Then perturbations in the form of standing waves with an amplitude which grows 
with time correspond to the case of an infinite initially straight jet. For a sufficiently 
viscous liquid one can neglect the inertial terms in comparison with the viscous terms in all 
the equations of the problem except for the projection of the momentum equation onto the 
normal to the jet axis (in the latter equation the viscous terms are small -- they have the 
order of the force of cutting apart). After transformations, details of which are presented 
in [|], we represent the quasi-one-dimensional equations of continuity, momentum (projections 
onto the normal and the tangent to the jet axis), and angular momentum, as well as the kine- 
matic and geometrical equations, in the dimensionless form 

O~a~Ot + Oa~W/Os = O, ( 1.1 ) 
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where a is the radius of the jet normalized to the initial value ao; t, time; s, a parameter 
measured along the axis of the unperturbed jet; V n and VT, projections of the velocity at the 
axis of the jet onto the normal and the tangent to the axis; H, departure of the jet axis from 
a straight line; P and Qn, longitudinal force and the force of cutting apart in a cross sec- 
tion of the jet; k, curvature of the jet axis. Moreover, as the linear and time scales we 
take the wavelength of the most rapidly growing small bending perturbation and the character- 
istic time of its growth, 

1/6, T = ~ , 
i =  2a 8 pp~u~" P~Uo 

w h i l e  ~ / T  i s  t a k e n  as t h e  s t r e s s  s c a l e .  Here  ~ i s  t h e  c o e f f i c i e n t  o f  v i s c o s i t y  o f  t h e  l i q u i d ;  
p and pl  a r e  t h e  l i q u i d  and a i r  d e n s i t i e s ;  Uo i s  t h e  v e l o c i t y  o f  t h e  u n p e r t u r b e d  j e t .  As t h e  
s i m i l a r i t y  c r i t e r i a  we i n t r o d u c e  t h e  d e s i g n a t i o n s  Re = p l 2 / ~ T  and J = pzU~T2 /9 l  2.  
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The initial perturbation was assigned in the form 

V~ : V~ = 0, a = I, H : H o s i n  2~s ,  Ho : ( 5 " J 0 - ~ - - 5 - t 0  -~) 

with the boundary conditions 

(1.2 

a(s) = a ( - s ) ,  V~ = V~ = ~ : O, s = O, ( ~ . 3 ) 

a(l/4 § s) = '  a(J/4 - s), V , J ! / 4  -F s) = V~(J/4 - s), 

H(I/4 + s) : I{(I/4 -- s), V~ = O, s = I/4. 

In the given case it is sufficient to analyze only a quarter of the wavelength of the pertur- 
bation. 

In the presence of an air drag force (taken into account using the drag of a cylinder in 
transverse streamline flow; see [I]) and a sufficiently high liquid viscosity the motion of 
the jet can be clearly separated into two components of different nature. One of them is the 
drift of the perturbation of the jet as a whole in the direction opposite to the motion of 
the jet, and the second is the deformation of the jet against the background of such drift 
under the action of the "]ifting" component of the aerodynamic force [], 3]. If the jet has 
a certain initial curvature, so that the drag force is different from zero, then, as is easy 
to ascertain, the drifting inertial motion remains even in the limit of an infinitely high 
viscosity, when bending deformations become infinitely slow and inertial effects in their 
development can be neglected. As a consequence of drift the jet axis can acquire a rather 
complicated shape and "whipouts" develop, so that the above-indicated parameterization of the 
jet axis must be rejected in favor of Lagrangian psrameterization. 

Let the initial perturbation of the jet axis be assigned by the sinusoid H = Ho sin 2~, 
where ~ is the Cartesian coordinate measured along the axis of the unperturbed jet (the bend- 
ing takes place in the gD plane). Then the value of the r coordinate for a given liquid 
particle at the initial time will be taken as its Lagrangian parameter s. For such a para- 
meterization one must take ds/dt = 0 in the kinematic equations of [1, 2]. Retaining the 
scales introduced earlier and leaving the inertial terms as before only in the projection of 
the momentum equation onto the normal to the jet axis, after a series of transformations (see 
[ 1 ] )  we obtain the quasi-one-dimensional equations of the jet in the form 

~v,~ t ,  ov,~ ) t { t  o0,, ) 
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where n~, n~, z~, and T~ are the projections of the normal and tangent to the jet axis onto 
the axes of the Cartesian coordinate system 01~. It is assumed that at the initial time the 
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functions a = a(s) and V T = VT(s) have a period of I/2, while the functions V n = Vn(s) and 
H + H(s) satisfy the conditions 

v~(s) = - v ~ ( s  + t/2), H(s) = --H(s + t/2) ( t . 5 )  

(the latter condition, in particular, is satisfied owing to the choice of the initial pertur- 
bation of the jet axis in the form of a sinusoid). These conditions will also be satisfied 
for any moment of time. In the calculations it was assumed thatlVn, = V T = 0 and a = 1 at 

t = 0, a consequence of which was the initial condition for (D---- ~ s in ( ! . 4 ) .  

The boundary conditions (1.3) and (I .5) used in the calculations assured the periodic 
extension of the solution corresponding to one perturbation wavelength to the entire jet. 
As a result, we investigated the so-called temporal instability of a jet in the frame of 
reference connected with the unperturbed jet. 

We note that surface tension is unimportant in the bending of jets of highly viscous 
liquids, and therefore we neglected them everywhere. 

2. Results of Calculations 

The numerical realizatio_~ of the systems of equations (l.l) and (1.4) was accomplished 
with an implicit finite-difference scheme, the spectrum of which well reproduced the spectrum 
of the linearized differential problem for small perturbations. We note that in the formal 
investigation of the finite-difference scheme it turns out that it has solutions which grow 
with time, which does not at all indicate its unsuitability but only reflects the natural in- 
stability of the physical phenomenon under investigation. Details involving the finite- 
difference method are presented in If, 4]. 

In the calculations we investigated the development of bending perturbations of jets of 
very viscous Newtonian liquids (~ = I0-]0 3 P, p = l g/cm ~, ao = I0 -I cm) moving in "air" 
(Pl = 10 -3 g/cm 3) with a velocity Uo = !0 3 cm/sec. The data obtained without allowance for 
the air drag force show that a small initial perturbation of a jet of the type (1.2) with 
Ho = 5"10 -4 rapidly becomes self-consistent and grows at the rate predicted by the linear 
theory of [3]. This is indicated by the comparison in Fig. I of the slopes of the linear 
sections of curves 1 (~ = I0 P) and 2 (~ = I00 P) with the straight line 3 corresponding to 
the linear theory of [3]. With a further increase in the amplitude of the perturbation its 
harmonic shape is distorted while the growth rate slows. The latter occurs under the action 
of viscous stress due to a nonlinear effect, the elongation of the jet axis during bending. 
Here and later the data in the figures are given in dimensionless quantities; in the case of 

= I0 P the scales are T = 0.0047 sec and I = 0.943 cm, while in the case of B = I00 P they 
are T = 0.01 sec and ~ = 2.02 cm. We emphasize that data obtained for the perturbation with 
a wavelength corresponding to the largest increment in the linear stage of growth are pre- 
sented here. 

If in the calculations without allowance for the air drag force the bending perturba- 
tions consist of a system of waves standing with respect to the jet and with an amplitude 
which grows with time, then the presence of drag results in the perturbations being carried 
along the jet by the oncoming stream until they break. In Figs. 2 (~ = I0 P) and 3 (D = 100 
P) we present the form of a segment of the jet corresponding to one wavelength of the pertur- 
bation at different times, which are given by numbers for each of the curves. The data pre- 
sented in Fig. 2 show that the rate of drift of a perturbation along the jet is about 1.5% of 
the velocity Uo of the unperturbed jet. Actually, the perturbations also consist of standing 
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waves in this case, despite the presence of the air drag force. The jet axis very rapidly 
(t = 7) acquires the shape of a step, as a result of which a "whipout" develops. During 
this time the perturbation is carried about 0.47 cm by the air stream, while the jet travels 
33 cm. An increase in the viscosity of the liquid with the other parameters kept unchanged 
results in an increase in the distance over which the perturbation wave propagates along the 
jet before breaking (see Fig. 3). For most of the time the shape of the perturbation before 
breaking depends little on the drag and is determined mainly by the "lifting" component of 
the aerodynamic force. This is natural, since the drag force is quadratic in the perturba- 
tion amplitude, and hence is important only for sufficiently large perturbations. 

Even in late stages of deformation, when the amplitude of the perturbation approaches 
its wavelength, breakup of the jet does not occur. This is illustrated by Fig. 4, showing 
the appearance of ~ segment of a liquid jet with D = I0 P over one wavelength of the pertur- 
bation at the instant of breaking (it corresponds to t = 7 of Fig. 2). The bending is 
accompanied by practically synchronous thinning of the jet over its entire length. There- 
fore, the question of the disruption of the continuity of a jet as a result of the growth of 
bending perturbations remains open. The meager experimental data [5-7] show that disruption 
of the jet occurs after the development of bending perturbations of large enough amplitude, 
and the mechanism under consideration goes beyond the scope of quasi-one-dimensional pro- 
cesses. The disruption of jets evidently takes place up until the stabilizing influence of 
the viscous stresses connected with elongation of the axis during bending begins to be felt. 
Therefore~ the results of the linear theory of [3] can be used with sufficiently good accu- 
racy to calculate the rate of growth of bending perturbations leading to the breakup of a 
jet, as indicated by their comparison with the data of numerical calculations. 
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NONSTATIONARY CRITICAL LAYER AND NONLINEAR INSTABILITY 

IN A PLANAR POISEUILLE FLOW 

V. P. Reutov UDC 532.526, 530.182 

One of the promising directions in the nonlinear instability theory of shear flows is 
related to the study of critical layers (CL) [1-6]. Stationary waves with a viscous non- 
linear CL have been studied in most detail [2, 3]. Analysis of nonstationary processes of 
practical interest was carried out for significant simplifying restrictions [4-6]. Thus, 
the nonlinear development of a wave in a channel and in a boundary layer was treated only in 
the limiting case of a strongly nonlinear CL near a stationary one [5]. To solve the problem 
of generation of turbulence in these flows, however, it is necessary to have some idea of the 
evolution of an initially linear wave. To study nonlinear instability in a planar Poiseuille 
flow we use below an approach similar to that of [6] for weather instability. We consider 
the development of long waves, represented on the (R, a) plane by points in the neighborhood 
of the upper branch of the neutral curve of the linear theory (a, wave number; and R, Reynolds 
number). For these waves it is possible to consider independently CL and viscous regions 
near the channel walls. Based on analyzing a nonstationary CL, we obtain equations describing 
the time evolution of a wave. The transition is traced from a linear viscous CL to a wave 
strongly nonlinear in the increasing amplitude. As is well known, stability problems with 
hydrodynamic flows are largely similar in that wave--particle interactions are generated in 
the plasma [7-9]. In the present paper the plasma-hydrodynamic analogy provides the wave 
energy in a Poiseuille flow, making it possible to interpret the results obtained from the 
point of view of general wave theoryt 

I. Starting Relations. We write down the equations for a viscous incompressible fluid 
in the form [I0] 

ouot-t-uOUOx-i-vaUoy = v A t ;  ( 1 . 1 )  

A~ = - -~ ,  ( 1 . 2 )  

where  A = 3 2 / 3 x  2 + 3 2 / 3 y 2 ;  r  i s  t h e  f l o w  v o r t i c i t y ,  ~ i s  t h e  s t r e a m  f u n c t i o n ,  i n t r o d u c e d  b y  
the relations u = 3~/3y, v = --~/~x; and v = I/R<<I is the reciprocal Reynolds number (all 
the variables are assumed to have been reduced to dimensionless form). Putting 

W,= S U (y) dy + r 

where U(y) > 0 is the velocity profile in a stationary Poiseuille flow between the walls 
y = 0 and y = 2, we obtain the following equation for ~: 

+ U  A ~ - - U "  a~aA, a ,  OA, 
---- Oz O~ - -  O--~j ' O z  + wA2~b (1.3)  

(the prime denotes differentiation with respect to y). Considering a wave periodic in x, we 
denote the complex amplitude of the Fourier harmonic by a variable with subscript n (n = I, 
2...): ~n(y, t) = <~ exp (--in~)> , etc., where ~ = x--ct, c is the phase velocity of the wave, 
and <...> is the average over a period. In the linear approximation the profile ~1(y) of a 
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